

CERTIFICATE OF ANALYSIS

Customer:ALS Laboratory Services dooLaboratory:ALS Czech Republic, s.r.o.Contact:Milica BozovicContact:Client ServiceAddress:Nikole Kopernika bb 19210 Bor SerbiaAddress:Na Harfe 336/9 Prague 9 - Vysocany 190 00 Czech RepublicE-mail:Milica.Bozovic@alsglobal.comE-mail:customer.support@alsglobal.comFelephone:Telephone:+420 226 226 228Project:Dioxin emission analysesPage:1 of 3Order number:Date Samples:24-Jun-2024Received Quote number:PR2023ALSLA-RS0001 (CZ-251-23-0421):Page:Site:SerbiaDate of test::27-Jun-2024 - 11-Jul-2024				
ContactMilica BozovicContactContactClient ServiceAddress: Mikole Kopernika bb 19210 Bor SerbiaAddress: Na Harfe 336/9 Prague 9 - Vysocany 190 00 Czech RepublicE-mail: Milica.Bozovic@alsglobal.comE-mail: customer.support@alsglobal.comFelephone:Telephone: +420 226 226 228Project: Dioxin emission analysesPage: 1 of 3Order number:Date Samples: 24-Jun-2024Received Quote number: PR2023ALSLA-RS0001 (CZ-251-23-0421):Site: SerbiaDate of test: 27-Jun-2024 - 11-Jul-2024Sampled by: customer: QC Level: ALS CR Standard Quality Control	Work Order	: PR2477609	Issue Date	: 11-Jul-2024
Address : Nikole Kopernika bb 19210 Bor Serbia Address : Na Harfe 336/9 Prague 9 - Vysocany 190 00 Czech Republic E-mail : Milica.Bozovic@alsglobal.com E-mail : customer.support@alsglobal.com Felephone : Telephone : +420 226 226 228 Project : Dioxin emission analyses Page : 1 of 3 Drder number : Date Samples : 24-Jun-2024 Received Received (CZ-251-23-0421) Site : Serbia Date of test : 27-Jun-2024 - 11-Jul-2024 Sampled by : customer QC Level : ALS CR Standard Quality Control	Customer	: ALS Laboratory Services doo	Laboratory	: ALS Czech Republic, s.r.o.
E-mail : Milica.Bozovic@alsglobal.com E-mail : customer.support@alsglobal.com Felephone : Telephone : +420 226 226 228 Project : Dioxin emission analyses Page : 1 of 3 Drder number : Date Samples : 24-Jun-2024 Received Quote number : PR2023ALSLA-RS0001 (CZ-251-23-0421) Site : Serbia Date of test : 27-Jun-2024 - 11-Jul-2024 Sampled by : customer QC Level : ALS CR Standard Quality Control	Contact	: Milica Bozovic	Contact	: Client Service
E-mail : Milica.Bozovic@alsglobal.com E-mail : customer.support@alsglobal.com Felephone : Telephone : +420 226 226 228 Project : Dioxin emission analyses Page : 1 of 3 Drder number : Date Samples : 24-Jun-2024 Received Quote number : PR2023ALSLA-RS0001 (CZ-251-23-0421) Site : Serbia Date of test : 27-Jun-2024 - 11-Jul-2024 Sampled by : customer QC Level : ALS CR Standard Quality Control	Address	: Nikole Kopernika bb	Address	: Na Harfe 336/9 Prague 9 - Vysocany
Felephone Immediate and growth of the standard quality Control Project Dioxin emission analyses Page : 1 of 3 Drder number : Date Samples : 24-Jun-2024 Received Quote number : PR2023ALSLA-RS0001 (CZ-251-23-0421) Date of test : 27-Jun-2024 - 11-Jul-2024 Site : Serbia Date of test : 27-Jun-2024 - 11-Jul-2024		19210 Bor Serbia		190 00 Czech Republic
Project : Dioxin emission analyses Page : 1 of 3 Order number : Date Samples : 24-Jun-2024 Received Quote number : PR2023ALSLA-RS0001 (CZ-251-23-0421) Site : Serbia Date of test : 27-Jun-2024 - 11-Jul-2024 Sampled by : customer QC Level : ALS CR Standard Quality Control	E-mail	: Milica.Bozovic@alsglobal.com	E-mail	: customer.support@alsglobal.com
Order number : Date Samples : 24-Jun-2024 Received Quote number : PR2023ALSLA-RS0001 (CZ-251-23-0421)	Telephone	:	Telephone	: +420 226 226 228
Site : Serbia Sampled by : customer	Project	: Dioxin emission analyses	Page	: 1 of 3
Quote number : PR2023ALSLA-RS0001 (CZ-251-23-0421) Site : Serbia Sampled by : customer QC Level : ALS CR Standard Quality Control	Order number	:	Date Samples	: 24-Jun-2024
Site : Serbia Date of test : 27-Jun-2024 - 11-Jul-2024 Sampled by : customer QC Level : ALS CR Standard Quality Control			Received	
Site : Serbia Date of test : 27-Jun-2024 - 11-Jul-2024 Sampled by : customer QC Level : ALS CR Standard Quality Control			Quote number	: PR2023ALSLA-RS0001
Site : Serbia Date of test : 27-Jun-2024 - 11-Jul-2024 Sampled by : customer QC Level : ALS CR Standard Quality Control				(CZ-251-23-0421)
	Site	: Serbia	Date of test	· · · · · · · · · · · · · · · · · · ·
	Sampled by	: customer	QC Level	

General Comments

This report shall not be reproduced except in full, without prior written approval from the laboratory. The laboratory is not responsible for the sample data supplied by the customer and their impact on the validity of the result.

The laboratory declares that the test results relate only to the listed samples. If "ALS" is not included in the test report in the "Sampled by" section, then the results refer to the sample as received.

Responsible for accuracy

<u>Signatories</u> Lubomír Pokorný

Mun

<u>Position</u> Country Manager

The company is certified according to ČSN EN ISO 14001 (Environmental management systems) and ČSN ISO 45001 (Occupational health and safety management systems)

Analytical Results

Sub-Matrix: AIR		Client sample ID		5		6			
		Laborat	ory sample ID	PR247760	9001	PR2477609002			
	C	lient sampli	ing date / time	[24-Jun-2	024]	[24-Jun-2	024]		
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
PCDDs and PCDFs (Dioxins an	d Furans)								
2378-TCDD	A-DFHMS02	-	ng/sample	0.390	± 30.0%	0.0760	± 30.0%		
12378-PeCDD	A-DFHMS02	-	ng/sample	3.90	± 30.0%	0.450	± 30.0%		
123478-HxCDD	A-DFHMS02	-	ng/sample	4.10	± 30.0%	0.260	± 30.0%		
123678-HxCDD	A-DFHMS02	-	ng/sample	9.80	± 30.0%	0.790	± 30.0%		
123789-HxCDD	A-DFHMS02	-	ng/sample	4.80	± 30.0%	0.410	± 30.0%		
1234678-HpCDD	A-DFHMS02	-	ng/sample	41.0	± 30.0%	3.40	± 30.0%		
OCDD	A-DFHMS02	-	ng/sample	18.0	± 30.0%	1.70	± 30.0%		
2378-TCDF	A-DFHMS02	-	ng/sample	7.40	± 30.0%	0.980	± 30.0%		
12378-PeCDF	A-DFHMS02	-	ng/sample	8.40	± 30.0%	0.540	± 30.0%		
23478-PeCDF	A-DFHMS02	-	ng/sample	10.0	± 30.0%	0.890	± 30.0%		
123478-HxCDF	A-DFHMS02	-	ng/sample	10.0	± 30.0%	0.550	± 30.0%		
123678-HxCDF	A-DFHMS02	-	ng/sample	11.0	± 30.0%	0.830	± 30.0%		
123789-HxCDF	A-DFHMS02	-	ng/sample	3.10	± 30.0%	0.0950	± 30.0%		
234678-HxCDF	A-DFHMS02	-	ng/sample	19.0	± 30.0%	0.920	± 30.0%		
1234678-HpCDF	A-DFHMS02	-	ng/sample	21.0	± 30.0%	1.50	± 30.0%		
1234789-HpCDF	A-DFHMS02	-	ng/sample	1.80	± 30.0%	0.180	± 30.0%		
OCDF	A-DFHMS02	-	ng/sample	2.80	± 30.0%	0.240	± 30.0%		
TEQ-Lowerbound	A-DFHMS02	-	ng/sample	15		1.3			
TEQ-Upperbound	A-DFHMS02	-	ng/sample	15		1.3			
PCB dioxin-like HRMS									
PCB 77	A-PCBHMS03	-	ng/sample	28.0	± 30.0%	9.20	± 30.0%		
PCB 81	A-PCBHMS03	-	ng/sample	6.90	± 30.0%	1.80	± 30.0%		
PCB 105	A-PCBHMS03	-	ng/sample	23.0	± 30.0%	9.10	± 30.0%		
PCB 114	A-PCBHMS03	-	ng/sample	<4.7		<1.8			
PCB 118	A-PCBHMS03	-	ng/sample	11.0	± 30.0%	7.80	± 30.0%		
PCB 123	A-PCBHMS03	-	ng/sample	<4.9		<2			
PCB 126	A-PCBHMS03	-	ng/sample	24.0	± 30.0%	4.40	± 30.0%		
PCB 156	A-PCBHMS03	-	ng/sample	13.0	± 30.0%	3.50	± 30.0%		
PCB 157	A-PCBHMS03	-	ng/sample	10.0	± 30.0%	2.90	± 30.0%		
PCB 167	A-PCBHMS03	-	ng/sample	<4.4		<1.8			
PCB 169	A-PCBHMS03	-	ng/sample	11.0	± 30.0%	1.60	± 30.0%		
PCB 170	A-PCBHMS03	-	ng/sample	14.0	± 30.0%	6.00	± 30.0%		
PCB 180	A-PCBHMS03	-	ng/sample	9.20	± 30.0%	8.20	± 30.0%		
PCB 189	A-PCBHMS03	-	ng/sample	8.00	± 30.0%	<2.3			
TEQ (dI-PCB) - lower	A-PCBHMS03	-	ng/sample	2.7		0.49			
TEQ (dI-PCB) - upper	A-PCBHMS03	-	ng/sample	2.7		0.49			

When sampling date is not provided by the client, the laboratory determines it for procedural reasons, then it is equal to the date of receipt of the sample to the laboratory and is displayed in brackets. Measurement uncertainty is expressed as expanded measurement uncertainty with coverage factor k = 2, representing 95% confidence level.

Key: LOR = Limit of reporting; MU = Measurement Uncertainty. The MU does not include sampling uncertainty.

Brief Method Summaries

Analytical Methods	Method Descriptions				
Location of test performance: V Raji 906 Pardubice - Zelene Predmesti Czech Republic 530 02					
A-DFHMS02	CZ_SOP_D06_06_174 (CSN EN 1948-2, CSN EN 1948-3):				
	Determination of polychlorinated dibenzo-p-dioxins and dibenzofuranes in emission samples by isotope dilution method using				
	HRGC-HRMS and calculation of TEQ parameters from measured values.				
	The samples were stored in laboratory in the darkness and under temperature <4°C.				
	Actual LOQ are noticed in the attachment.				

Issue Date	: 11-Jul-2024
Page	: 3 of 3
Work Order	: PR2477609
Customer	: ALS Laboratory Services doo

Analytical Methods	Method Descriptions				
A-PCBHMS03	CZ_SOP_D06_06_179 (ČSN EN 1948-4, US EPA Method TO-4A) Determination of PCB by isotope dilution method using				
	HRGC-HRMS and calculation of PCB sums from measured values.				
	The samples were stored in laboratory in the darkness and under temperature <4°C.				
	Actual LOQ are noticed in the annex.				
Preparation Methods	Method Descriptions				
Location of test performance: V Raji 906 Pardubice - Zelene Predmesti Czech Republic 530 02					
*A-PP-XAD	Preparation of cleaned XAD-2 sorbent dose for emission sampling				

The symbol "*" for the method indicates a test outside the scope of accreditation of the laboratory or subcontractor. If the UNICO-SUB code is stated in the method table, this only informs that the tests have been performed by a subcontractor and the results are given in an annex to the test report, including information on test accreditation. If the lab used for matrix outside the scope of accreditation or non-standard sample matrix procedure specified in the accredited method and issues non-accredited results, this fact is stated on the title page of this protocol in the section "Notes". If the test report shows the results of subcontracting, the place of performance of the test is outside the laboratories of ALS Czech Republic, s.r.o.

The method for calculating of the summation parameters is available on request in the customer service.

The end of the certificate of analysis

Attachment no. 1 to the Certificate of Analysis for work order PR2477609

5

Sample:

ALS SAMPLE ID: PR2477609/ 001 Measurement results PCDD/Fs:

Sample:	5		Final extract [µl]:		60
			Injection volume [Acquisition date [d		4 5.7.24 7:22
2,3,7,8-PCDD/Fs	Result	Limit of	Limit of	¹ I-TEFs	I-TEQ
		Detection	Quantification		Upperbound
	[ng/sample]	[ng/sample]	[ng/sample]		[ng/sample]
2,3,7,8-TCDD	0.39	0.011	0.022	1	0.39
1,2,3,7,8-PeCDD	3.9	0.015	0.03	0.5	2
1,2,3,4,7,8-HxCDD	4.1	0.021	0.042	0.1	0.41
1,2,3,6,7,8-HxCDD	9.8	0.021	0.042	0.1	0.98
1,2,3,7,8,9-HxCDD	4.8	0.021	0.042	0.1	0.48
1,2,3,4,6,7,8-HpCDD	41	0.022	0.045	0.01	0.41
OCDD	18	0.048	0.095	0.001	0.018
2,3,7,8-TCDF	7.4	0.0091	0.018	0.1	0.74
1,2,3,7,8-PeCDF	8.4	0.016	0.031	0.05	0.42
2,3,4,7,8-PeCDF	10	0.016	0.031	0.5	5
1,2,3,4,7,8-HxCDF	10	0.014	0.027	0.1	1
1,2,3,6,7,8-HxCDF	11	0.014	0.027	0.1	1.1
1,2,3,7,8,9-HxCDF	3.1	0.014	0.027	0.1	0.31
2,3,4,6,7,8-HxCDF	19	0.014	0.027	0.1	1.9
1,2,3,4,6,7,8-HpCDF	21	0.012	0.024	0.01	0.21
1,2,3,4,7,8,9-HpCDF	1.8	0.012	0.024	0.01	0.018
OCDF	2.8	0.041	0.083	0.001	0.0028
I-TEQ from quantified 2	2,3,7,8-PCDD/Fs -"	Lowerbound"			15
I-TEQ from 2,3,7,8-PC	DD/Fs -,,Mediumbo	und"			15
Maximum possible I-TEQ -"Upperbound"					15
PCDDs	Result [ng/sampl	e]	PCDFs	Result [ng/sample]	
Tetra-CDDs	150		Tetra-CDFs	390	
Penta-CDDs	180		Penta-CDFs	280	
Hexa-CDDs	200		Hexa-CDFs	110	
Hepta-CDDs	95		Hepta-CDFs		
OCDD	18		OCDF	2.8	

¹I-TEF according to NATO.

Limits of quantification are defined as double of the detection limits.

The limit of detection is defined as the amount of analyte producing a signal with $S/N \ge 3$.

The value of the detection limit is mentioned as the actual value at the acquisition date.

Measurement uncertainty is expressed as a double (k=2) relative standard deviation (RSD%), and corresponds to 95% confidence interval.

Estimation of uncertainty of each 2,3,7,8-PCDD/F congener is 30% and total I-TEQ is 20%.

These values were ensured by analyses of certified reference material under conditions of internal reproducibility.

Results marked with "<" are bellow limit of detection or quantification.

"Lowerbound" and "Upperbound" are levels defined in Regulation 2017/644 and EN 1948-4.

Attachment no. 1 to the Certificate of Analysis for work order PR2477609

Sample:

5

Sample:		5			
			Final extract [µl]:		60
			Injection volume	[µl]:	4
			Acquisition date [<i>i</i>	5.7.24 7:22
Extraction standard	Recovery	Acceptable ran		Accept. rec. w	-
PCDDs	[%]	Basic	Extended	basic range	extended range
13C12 - 2,3,7,8-TCDD	98	50 - 130	30 - 150	YES	-
13C12 - 1,2,3,7,8-PeCDD	100	50 - 130	30 - 150	YES	-
13C12 - 1,2,3,4,7,8-HxCDD	84	50 - 130	30 - 150	YES	-
13C12 - 1,2,3,6,7,8-HxCDD	93	50 - 130	30 - 150	YES	-
13C12 - 1,2,3,4,6,7,8-HpCDD	57	40 - 130	20 - 150	YES	-
13C12 - OCDD	45	40 - 130	20 - 150	YES	-
PCDFs					
13C12 - 2,3,7,8-TCDF	68	50 - 130	30 - 150	YES	-
13C12 - 2,3,4,7,8-PeCDF	84	50 - 130	30 - 150	YES	-
13C12 -1,2,3,4,7,8-HxCDF	84	50 - 130	30 - 150	YES	-
13C12 -1,2,3,6,7,8-HxCDF	81	50 - 130	30 - 150	YES	-
13C12 -2,3,4,6,7,8-HxCDF	77	50 - 130	30 - 150	YES	-
13C12 -1,2,3,4,6,7,8-HpCDF	82	40 - 130	20 - 150	YES	-
13C12 - OCDF	45	40 - 130	20 - 150	YES	-
Sampling standard	Recovery	Acceptable ran	ge	Rec. in range	?
	[%]	[%]			
13C12-1,2,3,7,8-PeCDF	110	> 50		YES	
13C12-1,2,3,7,8,9-HxCDF	110	> 50		YES	
13C12-1,2,3,4,7,8,9-HpCDF	78	> 50		YES	

Attachment no. 2 to the Certificate of Analysis for work order PR2477609

6

Sample:

ALS SAMPLE ID: PR2477609/ 002 Measurement results PCDD/Fs:

Sample:	6		Final extract [µl]:		60
			Injection volume [Acquisition date [6		4 5.7.24 8:14
2,3,7,8-PCDD/Fs	Result	Limit of	Limit of	¹ I-TEFs	I-TEQ
		Detection	Quantification		Upperbound
	[ng/sample]	[ng/sample]	[ng/sample]		[ng/sample]
2,3,7,8-TCDD	0.076	0.0059	0.012	1	0.076
1,2,3,7,8-PeCDD	0.45	0.008	0.016	0.5	0.22
1,2,3,4,7,8-HxCDD	0.26	0.01	0.021	0.1	0.026
1,2,3,6,7,8-HxCDD	0.79	0.01	0.021	0.1	0.079
1,2,3,7,8,9-HxCDD	0.41	0.01	0.021	0.1	0.041
1,2,3,4,6,7,8-HpCDD	3.4	0.011	0.022	0.01	0.034
OCDD	1.7	0.025	0.051	0.001	0.0017
2,3,7,8-TCDF	0.98	0.0053	0.011	0.1	0.098
1,2,3,7,8-PeCDF	0.54	0.0074	0.015	0.05	0.027
2,3,4,7,8-PeCDF	0.89	0.0074	0.015	0.5	0.44
1,2,3,4,7,8-HxCDF	0.55	0.0085	0.017	0.1	0.055
1,2,3,6,7,8-HxCDF	0.83	0.0085	0.017	0.1	0.083
1,2,3,7,8,9-HxCDF	0.095	0.0085	0.017	0.1	0.0095
2,3,4,6,7,8-HxCDF	0.92	0.0085	0.017	0.1	0.092
1,2,3,4,6,7,8-HpCDF	1.5	0.013	0.027	0.01	0.015
1,2,3,4,7,8,9-HpCDF	0.18	0.013	0.027	0.01	0.0018
OCDF	0.24	0.022	0.044	0.001	0.00024
I-TEQ from quantified 2					1.3
I-TEQ from 2,3,7,8-PC					1.3 1.3
Maximum possible I-T	ximum possible I-TEQ -"Upperbound"				
PCDDs	Result [ng/sampl	e]	PCDFs	Result [ng/sample]	
Tetra-CDDs	30		Tetra-CDFs	63	
Penta-CDDs	28		Penta-CDFs	25	
Hexa-CDDs	22		Hexa-CDFs	9.7	
Hepta-CDDs	7.6		Hepta-CDFs	2.6	
OCDD	1.7		OCDF 0.24		0.24

¹I-TEF according to NATO.

Limits of quantification are defined as double of the detection limits.

The limit of detection is defined as the amount of analyte producing a signal with $S/N \ge 3$.

The value of the detection limit is mentioned as the actual value at the acquisition date.

Measurement uncertainty is expressed as a double (k=2) relative standard deviation (RSD%), and corresponds to 95% confidence interval.

Estimation of uncertainty of each 2,3,7,8-PCDD/F congener is 30% and total I-TEQ is 20%.

These values were ensured by analyses of certified reference material under conditions of internal reproducibility.

Results marked with "<" are bellow limit of detection or quantification.

"Lowerbound" and "Upperbound" are levels defined in Regulation 2017/644 and EN 1948-4.

Attachment no. 2 to the Certificate of Analysis for work order PR2477609

Sample:

6

Sample:			6			
			Final extract [µl]:		60	
			Injection volume [4	
			Acquisition date [, ,	5.7.24 8:14	
Extraction standard	Recovery	Acceptable ran	0 1 3	Accept. rec. w	-	
PCDDs	[%]	Basic	Extended	basic range	extended range	
13C12 - 2,3,7,8-TCDD	100	50 - 130	30 - 150	YES	-	
13C12 - 1,2,3,7,8-PeCDD	110	50 - 130	30 - 150	YES	-	
13C12 - 1,2,3,4,7,8-HxCDD	110	50 - 130	30 - 150	YES	-	
13C12 - 1,2,3,6,7,8-HxCDD	110	50 - 130	30 - 150	YES	-	
13C12 - 1,2,3,4,6,7,8-HpCDD	79	40 - 130	20 - 150	YES	-	
13C12 - OCDD	57	40 - 130	20 - 150	YES	-	
PCDFs						
13C12 - 2,3,7,8-TCDF	83	50 - 130	30 - 150	YES	-	
13C12 - 2,3,4,7,8-PeCDF	110	50 - 130	30 - 150	YES	-	
13C12 -1,2,3,4,7,8-HxCDF	120	50 - 130	30 - 150	YES	-	
13C12 -1,2,3,6,7,8-HxCDF	100	50 - 130	30 - 150	YES	-	
13C12 -2,3,4,6,7,8-HxCDF	100	50 - 130	30 - 150	YES	-	
13C12 -1,2,3,4,6,7,8-HpCDF	96	40 - 130	20 - 150	YES	-	
13C12 - OCDF	56	40 - 130	20 - 150	YES	-	
Sampling standard	Recovery	Acceptable ran	ge	Rec. in range	?	
	[%]	[%]				
13C12-1,2,3,7,8-PeCDF	110	> 50		YES		
13C12-1,2,3,7,8,9-HxCDF	110	> 50		YES		
13C12-1,2,3,4,7,8,9-HpCDF	94	> 50		YES		

Attachment no. 3 to the Certificate of Analysis for work order PR2477609

5

Sample:

ALS SAMPLE ID: PR2477609/ 001 Measurement results PCBs:

Sample:			5				
			Final extract [µl]:		250		
			Injection volume	[µl]։	4		
		Acquisition date [d.m.y h:m]:					
	Result	Limit of	Limit of	¹ WHO-TEFs	WHO-TEQ		
		Detection	Quantification		Upperbound		
PCBs	[ng/sample]	[ng/sample]	[ng/sample]		[ng/sample]		
PCB #77	28	1.4	4.5	0.0001	0.0028		
PCB #81	6.9	1.3	4.2	0.0003	0.0021		
PCB #126	24	1.2	4.1	0.1	2.4		
PCB #169	11	0.99	3.3	0.03	0.32		
PCB #105	23	1.9	6.4	0.00003	0.00068		
PCB #114	< 4.7	1.4	4.7	0.00003	0.00014		
PCB #118	11	1.1	3.7	0.00003	0.00033		
PCB #123	< 4.9	1.5	4.9	0.00003	0.00015		
PCB #156	13	0.94	3.1	0.00003	0.0004		
PCB #157	10	1	3.5	0.00003	0.00031		
PCB #167	< 4.4	1.3	4.4	0.00003	0.00013		
PCB #170	14	1.9	6.2	-	0		
PCB #180	9.2	1.7	5.7	-	0		
PCB #189	8	1.7	5.6	0.00003	0.00024		
	n quantified PCBs -"Lo				2.7		
WHO-TEQ fron	n PCBs -,,Mediumboun	ıd"			2.7		
Maximum poss	ible WHO-TEQ -"Up	perbound"			2.7		
	Result	Limit of	Limit of	Σindicator PCB	Σindicator PCB		
		Detection	Quantification	Lowerbound	Upperbound		
PCBs	[ng/sample]	[ng/sample]	[ng/sample]	[ng/sample]	[ng/sample]		
PCB #28	24	0.88	7.9	24	24		
PCB #52	5.9	1.7	5.7	5.9	5.9		
PCB #101	6.4	1.6	5.3	6.4	6.4		
PCB #118	11	1.1	3.7	11	11		
PCB #138	16	1.8	6	16	16		
PCB #153	6.8	1.7	6.3	6.8	6.8		
PCB #180	9.2	1.7	5.7	9.2	9.2		
Σindicator PCB6	6 -"Lowerbound"	68					
	ole Σindicator PCB6 -	"Upperbound"			68		
Σindicator PCB7	7 -"Lowerbound"			79			
Maximal possib	ole Σindicator PCB7 -	"Upperbound"			79		

¹WHO 2005 TEF according to Van den Berg et al: Toxicological Sciences Advance Acces, 7 July 2006 Limits of quantification are defined on the base of blank level.

The limit of detection is defined as the amount of analyte producing a signal with $S/N \ge 3$.

The value of the detection limit is mentioned as the actual value at the acquisition date.

Measurement uncertainty is expressed as a double (k=2) relative standard deviation (RSD%), and

corresponds to 95% confidence interval.

Estimation of uncertainty of each PCB congener is 30%, total WHO-TEQ and PCB6/PCB7 is 20%. These values were ensured by analyses of certified reference material under conditions of internal reproducibility.

Results marked "<" are lower than the limit of detection or quantification.

"Lowerbound" and "Upperbound" are levels defined in Regulation 2017/644 and EN 1948-4.

Attachment no. 3 to the Certificate of Analysis for work order PR2477609

Sample: 5 F		Final extract [µl]:	250
		Injection volume [µl]:	4
		Acquisition date [d.m.y h:m]:	6.7.24 11:58
Sampling standard	Recovery [%]	Acceptable range [%]	Rec. in range?
13C12-2,3,4,4'-tetraCB (60)	118	> 50	YES
13C12-2,3,3',4,5,5'-hexaCB (159)	116	> 50	YES

Attachment no. 4 to the Certificate of Analysis for work order PR2477609

6

Sample:

ALS SAMPLE ID: PR2477609/ 002 Measurement results PCBs:

Sample:			6		
			Final extract [µl]:		250
			Injection volume	[µl]:	4
			Acquisition date [d.m.y h:m]:	6.7.24 12:40
	Result	Limit of	Limit of	¹ WHO-TEFs	WHO-TEQ
		Detection	Quantification		Upperbound
PCBs	[ng/sample]	[ng/sample]	[ng/sample]		[ng/sample]
PCB #77	9.2	0.56	1.9	0.0001	0.00092
PCB #81	1.8	0.53	1.8	0.0003	0.00055
PCB #126	4.4	0.47	1.6	0.1	0.44
PCB #169	1.6	0.41	1.4	0.03	0.048
PCB #105	9.1	0.77	2.6	0.00003	0.00027
PCB #114	< 1.8	0.53	1.8	0.00003	0.000053
PCB #118	7.8	0.45	2.4	0.00003	0.00023
PCB #123	< 2	0.59	2	0.00003	0.000059
PCB #156	3.5	0.37	1.2	0.00003	0.00011
PCB #157	2.9	0.43	1.4	0.00003	0.000086
PCB #167	< 1.8	0.55	1.8	0.00003	0.000055
PCB #170	6	0.8	2.7	-	0
PCB #180	8.2	0.73	2.4	-	0
PCB #189	< 2.3	0.7	2.3	0.00003	0.00007
WHO-TEQ from c	uantified PCBs -"Lo	owerbound"			0.49
WHO-TEQ from I	PCBs -,,Mediumbour	nd"			0.49
Maximum possib	le WHO-TEQ -"Up	perbound"			0.49
	Result	Limit of	Limit of	Σindicator PCB	Σindicator PCB
		Detection	Quantification	Lowerbound	Upperbound
PCBs	[ng/sample]	[ng/sample]	[ng/sample]	[ng/sample]	[ng/sample]
PCB #28	9.7	0.47	7.9	9.7	9.7
PCB #52	6.4	1	4.9	6.4	6.4
PCB #101	13	0.59	5.2	13	13
PCB #118	7.8	0.45	2.4	7.8	7.8
PCB #138	15	0.74	4.9	15	15
PCB #153	16	0.65	6.3	16	16
PCB #180	8.2	0.73	2.4	8.2	8.2
Σindicator PCB6 -	"Lowerbound"	69			
Maximal possible	Sindicator PCB6 -		69		
Σindicator PCB7 -	"Lowerbound"			76	
Maximal possible	Σindicator PCB7 -	"Upperbound"			76

¹WHO 2005 TEF according to Van den Berg et al: Toxicological Sciences Advance Acces, 7 July 2006 Limits of quantification are defined on the base of blank level.

The limit of detection is defined as the amount of analyte producing a signal with $S/N \ge 3$.

The value of the detection limit is mentioned as the actual value at the acquisition date.

Measurement uncertainty is expressed as a double (k=2) relative standard deviation (RSD%), and

corresponds to 95% confidence interval.

Estimation of uncertainty of each PCB congener is 30%, total WHO-TEQ and PCB6/PCB7 is 20%. These values were ensured by analyses of certified reference material under conditions of internal reproducibility.

Results marked "<" are lower than the limit of detection or quantification.

"Lowerbound" and "Upperbound" are levels defined in Regulation 2017/644 and EN 1948-4.

Attachment no. 4 to the Certificate of Analysis for work order PR2477609

Sample:	ample: 6		250
		Injection volume [µl]:	4
		Acquisition date [d.m.y h:m]:	6.7.24 12:40
Sampling standard	Recovery [%]	Acceptable range [%]	Rec. in range?
13C12-2,3,4,4'-tetraCB (60)	122	> 50	YES
13C12-2,3,3',4,5,5'-hexaCB (159)	105	> 50	YES

Attachment no. 5 to the Certificate of Analysis for work order PR2477609

Sample:

5 (21.3. - 23.4.2024)

Measurement results PCDD/Fs:

Sample:	ample: 5 (21.3 23		Final extract [µl]:		60
			Injection volume [μl]:	4
Sampled volume [m ³]:	439.31		Acquisition date [1.m.y h:m]:	5.7.24 7:22
2,3,7,8-PCDD/F	Result	Limit of	Limit of	¹ I-TEFs	I-TEQ
		Detection	Quantification		Upperbound
	$[ng/m^3]$	[ng/m ³]	[ng/m ³]		[ng/m ³]
2,3,7,8-TCDD	0.00089	0.000025	0.000051	1	0.00089
1,2,3,7,8-PeCDD	0.0089	0.000034	0.000067	0.5	0.0045
1,2,3,4,7,8-HxCDD	0.0092	0.000048	0.000095	0.1	0.00092
1,2,3,6,7,8-HxCDD	0.022	0.000048	0.000095	0.1	0.0022
1,2,3,7,8,9-HxCDD	0.011	0.000048	0.000095	0.1	0.0011
1,2,3,4,6,7,8-HpCDD	0.092	0.000051	0.0001	0.01	0.00092
OCDD	0.041	0.00011	0.00022	0.001	0.000041
2,3,7,8-TCDF	0.017	0.000021	0.000041	0.1	0.0017
1,2,3,7,8-PeCDF	0.019	0.000035	0.000071	0.05	0.00095
2,3,4,7,8-PeCDF	0.023	0.000035	0.000071	0.5	0.011
1,2,3,4,7,8-HxCDF	0.023	0.000031	0.000062	0.1	0.0023
1,2,3,6,7,8-HxCDF	0.026	0.000031	0.000062	0.1	0.0026
1,2,3,7,8,9-HxCDF	0.007	0.000031	0.000062	0.1	0.0007
2,3,4,6,7,8-HxCDF	0.042	0.000031	0.000062	0.1	0.0042
1,2,3,4,6,7,8-HpCDF	0.047	0.000027	0.000054	0.01	0.00047
1,2,3,4,7,8,9-HpCDF	0.0041	0.000027	0.000054	0.01	0.000041
OCDF	0.0063	0.000094	0.00019	0.001	0.0000063
I-TEQ from quantified 2	2,3,7,8-PCDD/Fs -"	Lowerbound"			0.035
I-TEQ from 2,3,7,8-PCI					0.035
Maximum possible I-T	EQ -"Upperbound	1"			0.035
PCDD	Result [ng/m ³]		PCDF	Result [ng/m	3]
Tetra-CDD	0.34		Tetra-CDF	0.89	
Penta-CDD	0.42		Penta-CDF	0.64	
Hexa-CDD	0.46		Hexa-CDF		0.26
Hepta-CDD	0.22		Hepta-CDF	Hepta-CDF 0.071	
OCDD	0.041		OCDF		0.0063

¹I-TEF according to NATO.

Limits of quantification are defined as double of the detection limits.

The limit of detection is defined as the amount of analyte producing a signal with $S/N \ge 3$.

The value of the detection limit is mentioned as the actual value at the acquisition date.

Measurement uncertainty is expressed as a double (k=2) relative standard deviation (RSD%), and corresponds to 95% confidence interval.

Estimation of uncertainty of each 2,3,7,8-PCDD/F congener is 30% and total I-TEQ is 20%.

These values were ensured by analyses of certified reference material under conditions of internal reproducibility.

Results marked with "<" are bellow limit of detection or quantification.

"Lowerbound" and "Upperbound" are levels defined in Regulation 2017/644 and EN 1948-4.

Attachment no. 5 to the Certificate of Analysis for work order PR2477609

Sample:

5 (21.3. - 23.4.2024)

Sample: 5 (21.3 23.4.2024)					
			T in -1		60
			Final extract [µl]: Injection volume	[u]]·	4
			Acquisition date [5.7.24 7:22
Extraction standard	Recovery	Acceptable ran		Accept. rec. w	
PCDDs	[%]	Basic	Extended	basic range	extended range
13C12 - 2,3,7,8-TCDD	98	50 - 130	30 - 150	YES	-
13C12 - 1,2,3,7,8-PeCDD	100	50 - 130	30 - 150	YES	-
13C12 - 1,2,3,4,7,8-HxCDD	84	50 - 130	30 - 150	YES	-
13C12 - 1,2,3,6,7,8-HxCDD	93	50 - 130	30 - 150	YES	-
13C12 - 1,2,3,4,6,7,8-HpCDD	57	40 - 130	20 - 150	YES	-
13C12 - OCDD	45	40 - 130	20 - 150	YES	-
PCDFs					
13C12 - 2,3,7,8-TCDF	68	50 - 130	30 - 150	YES	-
13C12 - 2,3,4,7,8-PeCDF	84	50 - 130	30 - 150	YES	-
13C12 -1,2,3,4,7,8-HxCDF	84	50 - 130	30 - 150	YES	-
13C12 -1,2,3,6,7,8-HxCDF	81	50 - 130	30 - 150	YES	-
13C12 -2,3,4,6,7,8-HxCDF	77	50 - 130	30 - 150	YES	-
13C12 -1,2,3,4,6,7,8-HpCDF	82	40 - 130	20 - 150	YES	-
13C12 - OCDF	45	40 - 130	20 - 150	YES	-
Sampling standard	Recovery	Acceptable ran	ge	Rec. in range	?
	[%]	[%]			
13C12-1,2,3,7,8-PeCDF	110	> 50		YES	
13C12-1,2,3,7,8,9-HxCDF	110	> 50		YES	
13C12-1,2,3,4,7,8,9-HpCDF	78	> 50		YES	

Attachment no. 6 to the Certificate of Analysis for work order PR2477609

Sample:

5 (21.3. - 23.4.2024)

ALS SAMPLE ID: PR2477609/ 001 Measurement results PCBs:

Sample:			5 (21.3 23.4.2	2024)	
			Final extract [µl]:		250
Sampled volume [N	Nm3]439.31		Injection volume [μl]:	4
			Acquisition date [d	d.m.y]:	08.07.2024
	Result	Limit of	Limit of	¹ WHO-TEFs	WHO-TEQ
		Detection	Quantification		Upperbound
PCBs	[ng/Nm3]	[ng/Nm3]	[ng/Nm3]		[ng/Nm3]
PCB #77	0.063	0.0031	0.01	0.0001	0.0000063
PCB #81	0.016	0.0029	0.0095	0.0003	0.0000047
PCB #126	0.055	0.0028	0.0093	0.1	0.0055
PCB #169	0.024	0.0022	0.0075	0.03	0.00072
PCB #105	0.052	0.0044	0.015	0.00003	0.0000015
PCB #114	< 0.011	0.0032	0.011	0.00003	0.00000032
PCB #118	0.025	0.0025	0.0085	0.00003	0.00000075
PCB #123	< 0.011	0.0033	0.011	0.00003	0.00000033
PCB #156	0.03	0.0021	0.0071	0.00003	0.0000009
PCB #157	0.024	0.0024	0.0079	0.00003	0.00000072
PCB #167	< 0.01	0.003	0.01	0.00003	0.0000003
PCB #170	0.033	0.0042	0.014	-	0
PCB #180	0.021	0.0039	0.013	-	0
PCB #189	0.00000055				
WHO-TEQ from q		0.0063			
WHO-TEQ from P		0.0063			
Maximum possible	0.0063				

¹WHO 2005 TEF according to Van den Berg et al: Toxicological Sciences Advance Acces, 7 July 2006 Limits of quantification are defined on the base of blank level.

The limit of detection is defined as the amount of analyte producing a signal with $S/N \ge 3$.

The value of the detection limit is mentioned as the actual value at the acquisition date.

Measurement uncertainty is expressed as a double (k=2) relative standard deviation (RSD%), and corresponds to 95% confidence interval.

Estimation of uncertainty of each PCB congener is 30%, total WHO-TEQ and PCB6/PCB7 is 20%. These values were ensured by analyses of certified reference material under conditions of internal reproducibility.

Results marked "<" are lower than the limit of detection or quantification.

"Lowerbound" and "Upperbound" are levels defined in Regulation 2017/644 and EN 1948-4.

Sample: 5 (21.3.	- 23.4.2024)	Final extract [µl]:	250
		Injection volume [µl]:	4
		Acquisition date [d.m.y h:m]:	6.7.24 11:58
Sampling standard	Recovery [%]	Acceptable range [%]	Rec. in range?
13C12-2,3,4,4'-tetraCB (60)	118	> 50	YES
13C12-2,3,3',4,5,5'-hexaCB (159)	116	> 50	YES

Attachment no. 7 to the Certificate of Analysis for work order PR2477609

Sample:

6 (22.4. - 21.5.2024)

Measurement results PCDD/Fs:

Sample:	6 (22.4 21.5.2024) Final extrac		Final extract [µl]:		60
			T 1	17	
Sampled volume [m ³]:	400.0		Injection volume [Acquisition date [4 5.7.24 8:14
	409.9	T			
2,3,7,8-PCDD/F	Result	Limit of	Limit of	¹ I-TEFs	I-TEQ
	F (27	Detection	Quantification		Upperbound
	[ng/m ³]	[ng/m ³]	[ng/m ³]		[ng/m ³]
2,3,7,8-TCDD	0.00019	0.000014	0.000029	1	0.00019
1,2,3,7,8-PeCDD	0.0011	0.000019	0.000039	0.5	0.00054
1,2,3,4,7,8-HxCDD	0.00062	0.000025	0.00005	0.1	0.000062
1,2,3,6,7,8-HxCDD	0.0019	0.000025	0.00005	0.1	0.00019
1,2,3,7,8,9-HxCDD	0.00099	0.000025	0.00005	0.1	0.000099
1,2,3,4,6,7,8-HpCDD	0.0083	0.000026	0.000053	0.01	0.000083
OCDD	0.0041	0.000062	0.00012	0.001	0.0000041
2,3,7,8-TCDF	0.0024	0.000013	0.000026	0.1	0.00024
1,2,3,7,8-PeCDF	0.0013	0.000018	0.000036	0.05	0.000066
2,3,4,7,8-PeCDF	0.0022	0.000018	0.000036	0.5	0.0011
1,2,3,4,7,8-HxCDF	0.0013	0.000021	0.000042	0.1	0.00013
1,2,3,6,7,8-HxCDF	0.002	0.000021	0.000042	0.1	0.0002
1,2,3,7,8,9-HxCDF	0.00023	0.000021	0.000042	0.1	0.000023
2,3,4,6,7,8-HxCDF	0.0023	0.000021	0.000042	0.1	0.00023
1,2,3,4,6,7,8-HpCDF	0.0036	0.000033	0.000066	0.01	0.000036
1,2,3,4,7,8,9-HpCDF	0.00043	0.000033	0.000066	0.01	0.0000043
OCDF	0.00059	0.000054	0.00011	0.001	0.00000059
I-TEQ from quantified 2	2,3,7,8-PCDD/Fs -"	Lowerbound"			0.0032
I-TEQ from 2,3,7,8-PCI	DD/Fs -,,Mediumbo	und"			0.0032
Maximum possible I-T	EQ -"Upperbound	l"			0.0032
PCDD	Result [ng/m ³]		PCDF	Result [ng/m	3]
Tetra-CDD	0.074		Tetra-CDF	0.15	
Penta-CDD	0.068		Penta-CDF	0.062	
Hexa-CDD	0.054		Hexa-CDF		0.024
Hepta-CDD	0.019		Hepta-CDF	epta-CDF 0.0063	
OCDD	0.0041		OCDF		0.00059

¹I-TEF according to NATO.

Limits of quantification are defined as double of the detection limits.

The limit of detection is defined as the amount of analyte producing a signal with $S/N \ge 3$.

The value of the detection limit is mentioned as the actual value at the acquisition date.

Measurement uncertainty is expressed as a double (k=2) relative standard deviation (RSD%), and corresponds to 95% confidence interval.

Estimation of uncertainty of each 2,3,7,8-PCDD/F congener is 30% and total I-TEQ is 20%.

These values were ensured by analyses of certified reference material under conditions of internal reproducibility.

Results marked with "<" are bellow limit of detection or quantification.

"Lowerbound" and "Upperbound" are levels defined in Regulation 2017/644 and EN 1948-4.

Attachment no. 7 to the Certificate of Analysis for work order PR2477609

Sample:

6 (22.4. - 21.5.2024)

Sample: 6 (22.4 21.5.2024)					
			Final extract [µl]:		60
			Injection volume		4
			Acquisition date [5.7.24 8:14
Extraction standard	Recovery	Acceptable ran	ge [%]	Accept. rec. w	with respect to
PCDDs	[%]	Basic	Extended	basic range	extended range
13C12 - 2,3,7,8-TCDD	100	50 - 130	30 - 150	YES	-
13C12 - 1,2,3,7,8-PeCDD	110	50 - 130	30 - 150	YES	-
13C12 - 1,2,3,4,7,8-HxCDD	110	50 - 130	30 - 150	YES	-
13C12 - 1,2,3,6,7,8-HxCDD	110	50 - 130	30 - 150	YES	-
13C12 - 1,2,3,4,6,7,8-HpCDD	79	40 - 130	20 - 150	YES	-
13C12 - OCDD	57	40 - 130	20 - 150	YES	-
PCDFs					
13C12 - 2,3,7,8-TCDF	83	50 - 130	30 - 150	YES	-
13C12 - 2,3,4,7,8-PeCDF	110	50 - 130	30 - 150	YES	-
13C12 -1,2,3,4,7,8-HxCDF	120	50 - 130	30 - 150	YES	-
13C12 -1,2,3,6,7,8-HxCDF	100	50 - 130	30 - 150	YES	-
13C12 -2,3,4,6,7,8-HxCDF	100	50 - 130	30 - 150	YES	-
13C12 -1,2,3,4,6,7,8-HpCDF	96	40 - 130	20 - 150	YES	-
13C12 - OCDF	56	40 - 130	20 - 150	YES	-
Sampling standard	Recovery	Acceptable ran	ge	Rec. in range	?
	[%]	[%]			
13C12-1,2,3,7,8-PeCDF	110	> 50		YES	
13C12-1,2,3,7,8,9-HxCDF	110	> 50		YES	
13C12-1,2,3,4,7,8,9-HpCDF	94	> 50		YES	

Attachment no. 8 to the Certificate of Analysis for work order PR2477609

Sample:

6 (22.4. - 21.5.2024)

ALS SAMPLE ID: PR2477609/ 002 Measurement results PCBs:

Sample:	6 (22.4 21.5.2024)					
			Final extract [µl]:		250	
Sampled volume	e [Nm3]409.9		Injection volume [μl]:	4	
	08.07.2024					
	Result	Limit of	Limit of	¹ WHO-TEFs	WHO-TEQ	
		Detection	Quantification		Upperbound	
PCBs	[ng/Nm3]	[ng/Nm3]	[ng/Nm3]		[ng/Nm3]	
PCB #77	0.022	0.0014	0.0045	0.0001	0.0000022	
PCB #81	0.0045	0.0013	0.0043	0.0003	0.0000014	
PCB #126	0.011	0.0011	0.0038	0.1	0.0011	
PCB #169	0.0039	0.001	0.0034	0.03	0.00012	
PCB #105	0.022	0.0019	0.0063	0.00003	0.00000067	
PCB #114	< 0.0043	0.0013	0.0043	0.00003	0.00000013	
PCB #118	0.019	0.0011	0.0058	0.00003	0.00000057	
PCB #123	< 0.0048	0.0014	0.0048	0.00003	0.00000014	
PCB #156	0.0087	0.0009	0.003	0.00003	0.00000026	
PCB #157	0.007	0.0011	0.0035	0.00003	0.00000021	
PCB #167	< 0.0045	0.0013	0.0045	0.00003	0.00000013	
PCB #170	0.015	0.002	0.0065	-	0	
PCB #180	0.02	0.0018	0.0059	-	0	
PCB #189	0.00000017					
WHO-TEQ from		0.0012				
WHO-TEQ from	0.0012					
Maximum possi	ible WHO-TEQ -"UI	operbound"			0.0012	

¹WHO 2005 TEF according to Van den Berg et al: Toxicological Sciences Advance Acces, 7 July 2006 Limits of quantification are defined on the base of blank level.

The limit of detection is defined as the amount of analyte producing a signal with $S/N \ge 3$.

The value of the detection limit is mentioned as the actual value at the acquisition date.

Measurement uncertainty is expressed as a double (k=2) relative standard deviation (RSD%), and corresponds to 95% confidence interval.

Estimation of uncertainty of each PCB congener is 30%, total WHO-TEQ and PCB6/PCB7 is 20%. These values were ensured by analyses of certified reference material under conditions of internal reproducibility.

Results marked "<" are lower than the limit of detection or quantification.

"Lowerbound" and "Upperbound" are levels defined in Regulation 2017/644 and EN 1948-4.

Sample: 6 (22.4.	6 (22.4 21.5.2024)		250
		Injection volume [µl]:	4
		Acquisition date [d.m.y h:m]:	6.7.24 12:40
Sampling standard	Recovery [%]	Acceptable range [%]	Rec. in range?
13C12-2,3,4,4'-tetraCB (60)	122	> 50	YES
13C12-2,3,3',4,5,5'-hexaCB (159)	105	> 50	YES